skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Minyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The summer intraseasonal oscillation (ISO) is characterized by a northward-moving rainband in the Indo–western Pacific warm pool region. The physical origin of the ISO is not fully understood, as it is masked by strong interaction of convection and circulation. This study examines intraseasonal to interannual variability during June–August over the Indo–western Pacific warm pool region. The results show that the tropical northwest Pacific anomalous anticyclone (NWP-AAC) is a fundamental mode on both intraseasonal and interannual time scales, destabilized by the monsoon mean state, specifically through barotropic energy conversion and convective feedback in the low-level confluence between the monsoon westerlies and easterly trade winds. On the interannual time scale, the NWP-AAC shows a biennial tendency, reversing phase from the summer of El Niño to the summer that follows; the AAC in post–El Niño summer is excited indirectly through sea surface temperature anomalies in the Indo–NWP. On the intraseasonal time scale, the column-integrated moisture advection causes the NWP-AAC-related convection to propagate northward. Our results provide a unifying view of multiscale Asian summer monsoon variability, with important implications for subseasonal to seasonal prediction. 
    more » « less
  2. null (Ed.)
    Abstract Using an eastern tropical Pacific pacemaker experiment called the Pacific Ocean–Global Atmosphere (POGA) run, this study investigated the internal variability in sea surface salinity (SSS) and its impacts on the assessment of long-term trends. By constraining the eastern tropical Pacific sea surface temperature variability with observations, the POGA experiment successfully simulated the observed variability of SSS. The long-term trend in POGA SSS shows a general pattern of salty regions becoming saltier (e.g., the northern Atlantic) and fresh regions becoming fresher, which agrees with previous studies. The 1950–2012 long-term trend in SSS is modulated by the internal variability associated with the interdecadal Pacific oscillation (IPO). Due to this variability, there are some regional discrepancies in the SSS 1950–2012 long-term change between POGA and the free-running simulation forced with historical radiative forcing, especially for the western tropical Pacific and southeastern Indian Ocean. Our analysis shows that the tropical Pacific cooling and intensified Walker circulation caused the SSS to increase in the western tropical Pacific and decrease in the southeastern Indian Ocean during the 20-yr period of 1993–2012. This decadal variability has led to large uncertainties in the estimation of radiative-forced trends on a regional scale. For the 63-yr period of 1950–2012, the IPO caused an offset of ~40% in the radiative-forced SSS trend in the western tropical Pacific and ~170% enhancement in the trend in the southeastern Indian Ocean. Understanding and quantifying the contribution of internal variability to SSS trends helps improve the skill for estimates and prediction of salinity/water cycle changes. 
    more » « less